Прогнозирование продаж предприятия — не предсказание о том, что произойдет в будущем. Это мощный бизнес-инструмент, основанный на анализе данных, который помогает контролировать бюджет, определяет продвижение бренда на рынок и помогает рассчитать будущую прибыль. Разберём современные системы прогнозирования продаж и правила построения прогнозов в бизнесе.
Продавать без ориентира на результат — значит пустить продажи на самотёк. А ведь назвать размер прибыли за измеримый период можно с точностью до 90%. Для этого необязательно быть экстрасенсом, достаточно овладеть методиками прогнозирования, но для начала разберёмся, зачем нужен прогноз.
Зачем прогнозировать продажи
Чтобы ставить цели. Цель — это сумма, которую компания должна получить через месяц, квартал, год. От этой цифры руководитель отдела продаж отталкивается, когда ставит менеджерам KPI и планирует премии.
Чтобы снизить расходы. Прогнозирование продаж товаров помогает оптимизировать затраты на производство и логистику. В случае провала плана, эти направления первыми попадут под нож.
Чтобы планировать ресурсы. Когда понятно, сколько получится заработать, можно планировать закупки, найм персонала, рекламу и аренду складов.
Чтобы управлять складскими остатками. Когда перед глазами вероятная прибыль, понимаешь, сколько товара и по какой цене нужно продавать. Это помогает избежать дефицита или переизбытка на складе.
Чтобы прогнозировать спад. Смягчить удар для бизнеса и остаться на плаву при снижении продаж можно, если учитывать причину падения спроса — например, сезонность.
Планирование и прогнозирование продаж: в чём разница
Прогноз продаж — это гипотеза.
То есть предположение о том, в каком объеме и за какой срок будет реализован товар. Аналитики строят гипотезы на основе исследования потенциала продаж — доли рынка. И только после того, как сформулированы гипотезы, составляют прогноз. Прогнозировать, опираясь на желание или интуицию, нельзя.
План продаж — это задача.
То есть конкретная измеримая цель, которая формируется на основе анализа показателей прошлых периодов. Задачу ставит руководитель отдела продаж (далее — РОП) менеджерам, или коммерческий директор — РОПу. При этом, предполагается, что для выполнения задачи есть ресурс.
Методы прогнозирования объёмов продаж
Поскольку экономические факторы сильно привязаны к политическим событиям, их динамика непредсказуема. Но получить более менее объективные цифры на краткосрочную перспективу можно, если применить основные методы прогнозирования продаж. Рассмотрим их.
Субъективные методы
Ожидания пользователей
Также известен как «метод изучения намерений покупателей». Помогает исследовать готовность потребителей приобрести услугу или товар. Этот метод больше оценивает потенциал рынка, нежели прогнозирует продажи. Точность метода невысокая, поскольку между намерением купить и покупкой — огромная пропасть, особенно при выводе на рынок новых товаров и услуг. Проблема в том, что потребители говорят о желании купить товар с определёнными функциями, но, в итоге, не покупают. Потому что, на самом деле, их интересуют не функции, а выгоды, которые они получают. Например, потребитель говорит, что ему нужен телефон с выходом в Интернет. На самом деле, он хочет тратить меньше времени на покупки, заказывая товары с доставкой на дом.
Так удовлетворение ожиданий пользователей обернулось для компании Kawasaki фиаско при выводе на рынок новой усовершенствованной модели гидроциклов. Изучив потребности пользователей, производитель техники решил, что превзойдет конкурентов, если добавит пространство для ног (в то время гидроциклами управляли стоя). Но пока конструкторы занимались доработкой модели, конкуренты вывели на рынок гидроцикл, на котором можно было сидеть.
Мнение продавцов
Также известен как «сбор мнений торгового персонала». Такой метод ставит прогноз на основе предположений продавцов о том, какой объем продукции они рассчитывают продать в течение заданного периода. Затем мнения систематически корректируются. Этот метод тоже нельзя назвать сверхточным, поскольку сотрудники либо недооценивают, либо переоценивают свои способности. Когда реальные показатели продаж оказываются выше спрогнозированных, создаётся впечатление, что сотрудник сверхэффективен. А когда ниже, то не всегда это говорит о неэффективности, т.к. на сбыт могут влиять внешние факторы (дефицит товаров, например).
Мнение менеджеров компании
Также известен, как «коллективное мнение ключевых руководителей». Базируется на формальном или неформальном опросе ведущих экспертов и топ-менеджеров внутри компании. Полученные оценки усредняют, а расхождения нивелируют путём коллективного обсуждения с поиском консенсуса. Метод не отличается высокой точностью, поскольку мнения сотрудников чаще базируются на интуитивных догадках, нежели на фактологии.
Метод экспертных оценок
Используется при выводе нового продукта на рынок или запуска стартапа, когда статистика за предыдущие периоды отсутствует. Тогда штатные или приглашённые аналитики исследуют рынок и на основе анализа выдвигают гипотезы. В данном методе на точность прогноза больше всего влияет человеческий фактор — компетентность экспертов. Чтобы нивелировать это влияние, компания предлагает ставить задачу по сбору данных нескольким специалистам. Например, штатному РОПу, маркетологу и, параллельно, аналитику со стороны. Полученные показатели усредняют и только потом формируют прогноз.
Объективные методы
Рыночное тестирование
Метод считается эффективным и заключается в продаже новых или улучшенных потребительских товаров в репрезентативных регионах для выяснения реакции потребителей. Полученные данные проецируются на весь рынок. Исследования показывают, что, в итоге, пользуются спросом три товара из четырех прошедших проверку. В то время как четыре товара из пяти непрошедших в действительности терпят крах. Недостаток теста в том, что он не действует для промышленных товаров и, в целом, занимает много времени.
Анализ временных рядов
Метод базируется на анализе «исторических» данных за прошедшие периоды времени. В простом варианте может точно определить объем сбыта для зрелой отрасли с незначительным ростом рынка. В иных условиях требует более сложным методов анализа. Например, таких:
Скользящее среднее
Если рассматривать прогноз о том, что объем сбыта за прошлый и текущий годы будет равен, то можно получить серьезные ошибки при незначительных колебаниях продаж из года в год. Чтобы учитывать колебания, как случайность, нужно периодически усреднять показатели продаж. Каждый раз мы будем получать среднее значение объемов продаж, которое послужит прогнозом на будущее.
Экспоненциальное сглаживание
Разновидность метода скользящего среднего, который отличается тем, что при составлении прогноза назначает наибольшие весовые коэффициенты только последним наблюдениям, как наиболее вероятным. На эффективность метода влияет выбор константы сглаживания в диапазоне от 0 до 1. Если объемы продаж изменяются незначительно, то используют низкие значения константы. Если изменения значительны и происходят быстро, используют высокие значения константы, чтобы прогнозируемый ряд имел наименьшую погрешность.
Декомпозиция
Метод помогает проанализировать данные за месяц или за квартал при колебаниях спроса и получить прогноз на год поквартально. При этом сначала выясняются факторы, влияющие на изменения спроса, которые могут быть продиктованы разными причинами. В декомпозиции рассматривают четыре влияющих фактора, с учетом которых и составляется прогноз продаж — тренд, циклический, сезонный и случайный.
Сезонность определяется первой и отражает ежегодные колебания, вызванные сменой сезонов из года в год.
Тренд определяется вторым и показывает долгосрочные изменения во временном ряде.
Циклический фактор определяется третьим и отражает подъемы и спады, длящиеся от двух до пяти лет.
Случайный фактор показывает воздействия на кривую продаж после исключения других трёх факторов.
Анализ годовых графиков
Используется при наличии данных по продажам за несколько лет. Годовые графики разбивают по месяцам и сравнивают получившиеся ежегодные графики в разрезе пиков и падений. Метод работает только тогда, когда в нише нет сильных колебаний. Если мы продаем импорт, а рынок упал или предложение обогнало спрос, данные за прошлый период утратят релевантность. Спасительным кругом в таком случае станет каузальный метод прогнозирования объёмов продаж, когда показатели продаж меняются в результате изменения одной и более переменных.
Делимся секретами высоких продаж, новостями и обновлениями из мира телемаркетинга в нашем Telegram-канале. Рассказываем, как обрабатывать возражения, презентовать продукт и общаться на языке пользы для клиента.
Дополнительные методы
Каузальный метод
Это метод глубокой аналитики, когда эксперты анализируют косвенные показатели и проецируют их на кривую продаж. Позволяет прогнозировать продажи с учетом гипотетических рисков — снижения доходов потребителей, демпинга конкурентов, провальных рекламных кампаний, падения национальной валюты и других факторов.
Попробуйте Скорозвон бесплатно
Свяжитесь с нами и получите бесплатный доступ в сервис на неделю.
За полчаса я помогу настроить «Скорозвон» под ваш колл-центр или отдел продаж.
Рассмотрим пример прогнозирования продаж в Excel. Допустим, у развивающегося предприятия стоит задача — составить прогноз на квартал с учетом роста и сезонности. Для решения этой задачи возьмём статистику по продажам за прошлый год (Рис. 1) и рассчитаем значение линейного тренда с помощью уравнения (Рис. 2).
Для нахождения коэффициентов a и b применим функцию ЛИНЕЙН для ячейки D15. Далее выделим ячейки D15 и E15 так, чтобы активной осталась только D15. Жмём F2, а затем Ctrl + Shift + Enter. Получаем показатели a и b (Рис. 3).
Теперь рассчитаем у для каждого периода тренда. Для этого подставим коэффициенты a и b в уравнение, где х — номер периода (Рис. 4).
Для того чтобы получить коэффициент сезонности, находим отклонения показателей продаж за год от значений тренда — B2/D2 (Рис. 5).
Рассчитаем средние показатели продаж за год, используя формулу СРЗНАЧ (Рис. 6).
Определим ежемесячный индекс сезонности с помощью формулы =B2/$F$2 (Рис.7).
Определим общий индекс сезонности. Для этого разделим объем продаж за каждый месяц на средний годовой объем продаж и применим к ячейке H2 функцию =СРЗНАЧ(G2:G13) (Рис. 8).
Продлим номера периодов временного ряда на три значения в столбце «Периоды для прогноза» (Рис. 9).
Рассчитаем значения тренда для будущих периодов. Изменим в уравнении значение х путем копирования формулы из D2 в J2, J3, J4 (Рис. 10).
Дальше, используя формулу J2*G2, получим данные для прогнозирования продаж продукции на квартал (Рис. 11).
Так выглядит прогноз в Excel-таблице (Рис. 12) и в графиках (Рис. 13), (Рис. 14).